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                                                                 UNIT-IV 

 

Memory Management and Virtual Memory 

The main purpose of a computer system is to execute programs. 

During the execution of these programs together with the data they access must be stored 

in main memory. 

Memory consists of a large array of bytes. Each Byte has its own address. 

CPU fetches instructions from memory according to the value of the program counter. 

BASIC HARDWARE 

CPU can access data directly only from Main memory and processor registers. 

Main memory and the Processor registers are called Direct Access Storage Devices. 

Any instructions in execution and any data being used by the instructions must be in one 

of these direct-access storage devices. 

If the data are not in memory then the data must be moved to main memory before the 

CPU can operate on them. 

Registers that are built into the CPU are accessible within one CPU clock cycle. 

Completing a memory access from main memory may take many CPU clock cycles. 

Memory access from main memory is done through memory bus. 

In such cases, the processor needs to stall, since it does not have the required data to 

complete the instruction that it is executing. 

To avoid memory stall, we need to implement Cache memory in between Main memory 

and CPU. 

BASE REGISTER & LIMIT REGISTER 

Each process has a separate memory space that protects the processes from each other. It is 

fundamental to having multiple processes loaded in memory for concurrent execution. 

There are two register that provides protection: Base register and Limit register 

Base Register holds the smallest legal physical memory address. 

Limit register specifies the size of the range (i.e. process size). 

Example: if the base register holds 300040 and the limit register is 120900, then the program 
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can legally access all addresses from 300040 through 420939 (inclusive). 
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The base and limit registers can be loaded only by the operating system by using a special  

privileged instruction that can be executed only in kernel mode. 

Protection of memory space is accomplished by having the CPU hardware compare every 

address generated in user mode with the registers. 

Any attempt by a program executing in user mode to access operating-system memory or 

other users’ memory results in a trap to the operating system, which treats the attempt as a  

Fatal Error. 

This scheme prevents a user program from either accidentally or deliberately modifying 

the code or data structures of other users and the operating system. 

Operating system executing in kernel mode is given unrestricted access to both operating- 

system memory and users’ memory. This provision allows the operating system to do certain 

tasks such as: 

Load users’ programs into users’ memory 

To dump out those programs in case of errors 

To access and modify parameters of system calls 

To perform I/O to and from user memory etc. 

Example: A Multiprocessing Operating system must execute context switches, storing the 

state of one process from the registers into main memory before loading the next process’s 

context from main memory into the registers. 

Address Binding 

A program resides on a disk as a binary executable file. The program must be brought into 

memory and placed within a process for execution. 

The process may be moved between disk and memory during its execution. 

The processes on the disk that are waiting to be brought into memory for execution are 

put into the Input Queue. 

Addresses may be represented in different ways during these steps. 

Addresses in the source program are generally symbolic, such as the variable count. 

A compiler typically binds these symbolic addresses to Relocatable addresses such as 

“14 bytes from the beginning of this module”. 

The Linkage editor or Loader in turn binds Relocatable addresses to Absolute 

addresses such as 74014 (i.e. 74000+14=74014). 

Each binding is a mapping from one address space to another address space. 

Binding of instructions and data to memory addresses can be done at any of following steps: 

Compile time. 

If you know at compile time where the process will reside in memory then Absolute code 

can be generated. 

Example: If you know that a user process will reside starting at location R, then the 

generated compiler code will start at that location and extend up from there. 

After some time, if the starting location has been changed then it will be necessary to 

recompile this code. 

The MS-DOS .COM-format programs are bound at compile time. 
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Load time 

If it is not known at compile time where the process will reside in memory, then the 

compiler must generate Relocatable code. 

In this case, final binding is delayed until load time. If the starting address changes, we 

need to reload only the user code to incorporate this changed value. 

Execution time 

If the process can be moved during its execution from one memory segment to another, 

then binding must be delayed until run time. 

Most general-purpose operating systems use this method. 

Logical Versus Physical Address Space 

Logical address is the address generated by the CPU. 

Physical address is the address that is loaded into the Memory-Address Register of the 

memory. 

The set of all logical addresses generated by a program is a Logical Address Space. 

The set of all physical addresses corresponding to these logical addresses is a Physical 

Address Space. 

The Compile-time and Load-time address-binding methods generate identical logical and 

physical addresses. 

The execution-time address binding scheme results in different logical and physical 

addresses. At this time we call logical address as Virtual address. 

The run-time mapping from virtual address to physical addresses is done by a hardware 

device called the Memory-Management Unit (MMU). 

Base register is now called a Relocation Register. Value in the relocation register is added 

to every address generated by a user process at the time the address is sent to memory. 
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Example: If the base is at 14000, then an attempt by the user to address location 0 is 

dynamically relocated to location 14000. An access to location 346 is mapped to location 

14346. 

The user program never sees the real Physical addresses. The program can create a pointer 

to location 346, store it in memory, manipulate it and compare it with other addresses all 

as the number 346. 

Only when it is used as a memory address, it is relocated relative to the base register. 

The user program deals with logical addresses. The Memory-mapping hardware converts 

logical addresses into physical addresses. 

Final location of a referenced memory address is not determined until the reference is 

made. 

Example: Logical addresses in the range 0 to max and Physical addresses in the range (R+0) 

to (R + max) for a base value R. 

The user program generates only logical addresses and thinks that the process runs in 

locations 0 to max. 

These logical addresses must be mapped to physical addresses before they are used. 

Dynamic Loading 

With dynamic loading, a routine is not loaded until it is called. 

All routines are kept on disk in a relocatable load format. The main program is loaded 

into memory and it is executed. 

When a routine needs to call another routine, the calling routine first checks to see 

whether the other routine has been loaded. 

If it has not loaded, the relocatable linking loader is called to load the desired routine into 

memory and to update the program’s address tables to reflect this change. 

Then control is passed to the newly loaded routine. 

Advantage: It is useful when large amounts of code are needed to handle infrequently 

occurring cases, such as error routines. In this case, although the total program size may be 

large, the portion that is used may be much smaller. 

Note: It is the responsibility of the users to design their programs to support Dynamic linking.  

Operating systems may help the programmer by providing library routines to implement  

dynamic loading. 
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Dynamic Linking 

Dynamically linked libraries are system libraries that are linked to user programs when the 

programs are running. 

In static linking system libraries are treated like any other object module and they are 

combined by the loader into the binary program image. 

In Dynamic linking, the linking is postponed until execution time. 

This feature is usually used with system libraries, such as language subroutine libraries. 

Without dynamic linking, each program on a system must include a copy of its language 

library in the executable image. This will waste both disk space and main memory. 

With dynamic linking, a stub is included in the image for each library routine reference. 

The stub is a small piece of code that indicates how to locate the appropriate memory- 

resident library routine or how to load the library if the routine is not already present. 

When the stub is executed, it checks to see whether the needed routine is already in 

memory. If it is not, the program loads the routine into memory. 

The stub replaces itself with the address of the routine and executes the routine. 

Thus, the next time that particular code segment is reached, the library routine is executed 

directly, incurring no cost for dynamic linking. 

Under this scheme, all processes that use a language library execute only one copy of the 

library code. 

Shared Libraries 

A library may be replaced by a new version and all programs that reference the library 

will automatically use the new version. 

Without dynamic linking, all such programs would need to be relinked to gain access to 

the new library. 

So that programs will not accidentally execute new or incompatible versions of libraries. 

Version information is included in both the program and the library. 

More than one version of a library may be loaded into memory and each program uses its 

version information to decide which copy of the library to use. 

Versions with minor changes retain the same version number, whereas versions with 

major changes increment the number. 

Thus, only programs that are compiled with the new library version are affected by any 

incompatible changes incorporated in it. 

Other programs linked before the new library was installed will continue using the older 

library. This system is also known as shared libraries. 

Note: Dynamic linking and shared libraries require help from the operating system. 

SWAPPING 

A process must be in Main memory to be executed. A process can be swapped temporarily 

out of main memory to a backing store and then brought back into main-memory for continued 

execution. 
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Swapping makes it possible for the total physical address space of all processes to exceed the 

real physical memory of the system, thus increasing the degree of multiprogramming in a 

system. 

Standard Swapping 

Standard swapping involves moving processes between main memory and a backing store. 

The backing store is commonly a fast disk (i.e. Hard Disk). It must be large enough to 

accommodate copies of all memory images for all users and it must provide direct access 

to these memory images. 

The system maintains a Ready Queue consisting of all processes whose memory images 

are on the backing store or in memory and the processes are ready to run. 

Whenever the CPU scheduler decides to execute a process, it calls the dispatcher. 

The dispatcher checks to see whether the next process in the queue is in main memory. 

If it is not in main memory and if there is no free memory region, the dispatcher swaps out 

a process currently in main memory and swaps in the desired process. It then reloads 

registers and transfers control to the selected process. 

The context-switch time in such a swapping system is fairly high. The major part of the  

swap time is transfer time. The total transfer time is directly proportional to the amount of 

memory swapped. 

If we want to swap a process, we must be sure that the process is completely idle such as 

waiting for I/O. 
 

Standard swapping is not used in modern operating systems. It requires too much swapping 

time and provides too little execution time to be a reasonable memory-management solution. 

UNIX, Linux and Windows use modified versions of swapping as below: 

Swapping is enabled only when the amount of free memory falls below a threshold 

amount. 

Swapping is disabled when the amount of free memory increases. 

Operating system swaps portions of processes rather than the entire process to decrease 

the swap time. 

Note: This type of swapping works in conjunction with Virtualization. 
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Swapping on Mobile systems 

Mobile systems such as iOS and Android do not support swapping. 

Mobile devices generally use flash memory rather than more spacious Hard disks as their 

persistent storage. 

Mobile operating-system designers avoid swapping because of the less space constraint. 

Flash memory can tolerate only the limited number of writes before it becomes unreliable 

and the poor throughput between main memory and flash memory in these devices. 

Alternative methods used in Mobile systems instead of swapping: 

Apple’s iOS asks applications to voluntarily relinquish allocated memory when free 

memory falls below a certain threshold. 

Read-only data (i.e. code) are removed from the system and later reloaded from flash 

memory if necessary. 

Data that have been modified such as the stack are never removed. 

Any applications that fail to free up sufficient memory may be terminated by the operating 

system. 

Android may terminate a process if insufficient free memory is available. Before 

terminating a process android writes its Application state to flash memory so that it can 

be quickly restarted. 

CONTIGUOUS MEMORY ALLOCATION 

Memory allocation can be done in two ways: 

1. Fixed Partition Scheme (Multi-programming with Fixed Number of Tasks) 

2. Variable partition scheme (Multi-programming with Variable Number of Tasks) 

Fixed Partition Scheme (MFT) 

The memory can be divided into several Fixed-Sized partitions. 

Each partition may contain exactly one process. Thus, the degree of multiprogramming is 

bound by the number of partitions. 

In this Multiple-Partition method, when a partition is free, a process is selected from the 

input queue and is loaded into the free partition. 

When the process terminates, the partition becomes available for another process. 

Note: This method was originally used by the IBM OS/360 operating system (called MFT) 

but is no longer in use. 

Variable partition scheme (MVT) 

In the variable-partition scheme, the operating system keeps a table indicating which parts of 

memory are available and which are occupied. 

Initially, all memory is available for user processes and it is considered one large block of 

available memory called as Hole. 

Eventually the memory contains a set of holes of various sizes. 

As processes enter the system, they are put into an Input Queue. 

The operating system takes into account the memory requirements of each process and the 

amount of available memory space in determining which processes are allocated memory. 
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When a process is allocated space, it is loaded into memory and it can then compete for  

CPU time. 

When a process terminates, it releases its memory. The operating system may use this free 

fill with another process from the input queue. 

Memory is allocated to processes until the memory requirements of the next process cannot be 

satisfied (i.e.) there is no available block of memory is large enough to hold that process. 

Then operating system can wait until a large block is available for the process or it can skip the 

process and moves down to the input queue to see whether the smaller memory requirements 

of some other process can be met. 

The memory blocks available comprise a set of holes of various sizes scattered throughout 

main memory. 

When a process arrives and needs memory, the system searches the set for a hole that is 

large enough for this process. 

If the hole is too large, it is split into two parts. One part is allocated to the arriving process 

and the other part is returned to the set of holes. 

When a process terminates, it releases its block of memory, which is then placed back in 

the set of holes. 

If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger 

hole. 

At this point, the system may need to check whether there are processes waiting for memory 

and whether this newly freed and recombined memory could satisfy the demands of any of 

these waiting processes. 

Dynamic Storage Allocation Problem: 

The above procedure leads to Dynamic storage allocation problem which concerns how to 

satisfy a request of size n from a list of free holes. 

There are 3-solutions for this problem: First fit, Best fit, worst fit. 

First fit: It allocates the first hole that is big enough. Searching can start either at the 

beginning of the set of holes or at the location where the previous first-fit search ended. We 

can stop searching as soon as we find a free hole that is large enough. 

Best fit. It allocates the smallest hole that is big enough. We must search the entire list,  

unless the list is ordered by size. This strategy produces the smallest leftover hole. 

Worst fit. It allocates the largest hole. Again, we must search the entire list, unless it is 

sorted by size. This strategy produces the largest leftover hole, which may be more useful 

than the smaller leftover hole from a best-fit approach. 

FRAGMENTATION 

There are 2-problems with Memory allocation 

1. Internal Fragmentation 

2. External Fragmentation 
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Internal Fragmentation 

Consider a multiple-partition allocation scheme with a hole of 18,464 bytes. 

Suppose that the next process requests 18,462 bytes. If we allocate exactly the requested 

block, we are left with a hole of 2 bytes. 

The overhead to keep track of this hole will be substantially larger than the hole itself. 

The general approach to avoiding this problem is to break the physical memory into 

fixed-sized blocks and allocate memory in units based on block size. 

With this approach, the memory allocated to a process may be slightly larger than the 

requested memory. 

The difference between these two numbers is Internal Fragmentation. It is unused 

memory that is internal to a partition. 

External Fragmentation 

Both the first-fit and best-fit strategies for memory allocation suffer from External 

Fragmentation. 

As processes are loaded and removed from main memory, the free memory space is broken 

into small pieces. 

External fragmentation exists when there is enough total memory space to satisfy a request 

but the available spaces are not contiguous, the storage is fragmented into a large number  

of small holes. 

External fragmentation problem can be severe. In the worst case, we could have a block of 

free memory between every two processes that is wasted. 

If all these small pieces of memory were in one big free block instead, we might be able to 

run several more processes. 

Solution to External fragmentation 

One solution to the problem of external fragmentation is Compaction. 

The goal is to shuffle the memory contents so as to place all free memory together in one 

large block. 

Compaction is possible only if relocation is dynamic and is done at execution time. 

If addresses are relocated dynamically, relocation requires only moving the program and 

data and then changing the base register to reflect the new base address. 

If relocation is static and is done at assembly or load time, compaction cannot be done. 

Note: Compaction can be expensive, because it moves all processes toward one end of 

memory. All holes move in the other direction and produces one large hole of available 

memory. 

Other solutions to External fragmentation are Segmentation and Paging. They allow a process 

to be allocated physical memory wherever such memory is available. These are Non- 

contiguous memory allocation techniques. 

Memory Protection 

OS can prevent a process from accessing other process memory. We use two registers for this 

purpose: Relocation register and Limit register. 

Relocation register contains the value of the smallest physical address such as 100040. 

Limit register contains the range of logical addresses such as 74600. 
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Each logical address must be within the range specified by the limit register. 

The relocation-register scheme provides an effective way to allow the operating system’s 

size to change dynamically. 

Memory Management Unit maps the logical address dynamically by adding the value in 

the relocation register. This mapped address is sent to memory 

When the CPU scheduler selects a process for execution, the dispatcher loads the relocation 

register and limit registers with the correct values as part of the context switch. 

Because every address generated by a CPU is checked against these registers, we can 

protect both the operating system and the other users’ programs and data from being  

modified by this running process. 

SEGMENTATION 

Segmentation is a memory-management scheme that permits the physical address space of a 

process to be noncontiguous. 

A logical address space is a collection of segments. Each segment has a name and a length. 

Logical addresses specify both the segment name and the offset within the segment. 

The programmer specifies each address by two quantities: a segment name and an offset. 

The segments are referred to by Segment Number. 

A logical address consisting of two tuples: <Segment Number, offset> 

A C compiler might create separate segments for the following: 

The code 

Global variables 

The heap, from which memory is allocated 

The stacks used by each thread 

The standard C library 
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Note: Libraries that are linked in during compile time might be assigned separate segments. 

The loader would take all these segments and assign them segment numbers. 

Segmentation Hardware 

Logical address can be viewed by a programmer as a two dimensional address and where as 

actual Physical address is a one dimensional address. 

The Memory Management Unit (MMU) maps two-dimensional user-defined addresses 

into one-dimensional physical address. 

This mapping is effected by a Segment table. 

Each entry in the segment table has a segment base and a segment limit. 

The segment base contains the starting physical address where the segment resides in 

memory and the segment limit specifies the length of the segment. 

A logical address consists of two parts: segment number s and an offset into that segment d. 

The segment number is used as an index to the segment table. 

The offset d of the logical address must be between 0 and the segment limit. 

When an offset is legal, it is added to the segment base to produce the address in physical 

memory of the desired byte. 

If d>=segment limit, it is illegal then an addressing error trap will be generated that 

indicates logical addressing attempt beyond end of segment. 

The segment table is essentially an array of base–limit register pairs. 

Example: Consider the below diagram that have five segments numbered from 0 to 4. The 

segments are stored in physical memory. 
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The segment table has a separate entry for each segment, giving the beginning address of the 

segment in physical memory (i.e. base) and the length of that segment (i.e. limit). 

1. Segment 2 is 400 bytes long and begins at location 4300. Thus, a reference to byte 53 of 

segment 2 is mapped onto location 4300 + 53 = 4353. 

2. A reference to segment 3, byte 852 is mapped to 3200 (base of segment 3) + 852 = 4052. 

3. A reference to byte 1222 of segment 0 would result in a trap to the operating system, as 

this segment is only 1,000 bytes long. 

PAGING 

Paging also permits the physical address space of a process to be noncontiguous. 

Paging avoids External fragmentation and need for compaction. 

Paging is implemented through cooperation between the operating system and the computer 

hardware. 

Physical memory is divided into fixed-sized blocks called Frames. 

Logical memory is divided into blocks of the same size called Pages. 

Frame size is equal to the Page size. 

When a process is to be executed, its pages are loaded into any available memory frames 

from their source such as a file system or backing store. 

The backing store is divided into fixed-sized blocks that are the same size as the memory 

frames or clusters of multiple frames. 

Frame table maintains list of frame and the allocation details of the frames (i.e.) A frame 

is free or allocated to some page. 

Each process has its own page table. When a page is loaded into main memory the 

corresponding page table is active in the system and all other page tables are inactive. 

Page tables and Frame tables are kept in main memory. A Page-Table Base Register 

(PTBR) points to the page table. 
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The page number is used as an index into a Page table. The page table contains the base 

address of each page in physical memory. 

This base address is combined with the page offset to define the physical memory address 

that is sent to the memory unit. 

 

 

 

 

 

 

 

 

 

 
 

Every address generated by the CPU is divided into two parts: a page number (p) and 
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The below shows the paging of Logical and Physical memory: 

The page size is defined by the hardware. The size of a page is a power of 2. 

Depending on the computer architecture the page size varies between 512 bytes and 1 GB 

per page. 

The selection of a power of 2 as a page size makes the translation of a logical address into 

a page number and page offset particularly easy. 

If the size of the logical address space is 2m and a page size is 2n bytes, then the high- order 

(m–n) bits of a logical address designate the page number and the n low-order bits designate 

the page offset. 

The logical address contains: p is an index into the page table and d is the displacement within 

the page. 

Example: consider the memory in the below figure where n= 2 and m = 4. 

Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the 

programmer’s view of memory can be mapped into physical memory. 

Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is 

in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 4) + 0]. 

Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) + 3]. 

Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to 

frame 6. Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0]. 

Logical address 13 maps to physical address 9. 
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Paging scheme avoids external fragmentation but it creates internal fragmentation because of 

fixed size pages. 

If page size is 2048 bytes, a process of 20489 bytes will need 10 pages plus 9 bytes. 

It will be allocated 11 frames, resulting in internal fragmentation of 2048−9 = 2037 bytes. 

In the worst case, a process would need n pages plus 1 byte. It would be allocated n + 1 

frames resulting in internal fragmentation of almost an entire frame. 

If the page size is small then the number of entries in page table is more this will leads to 

huge number of context switches. 

If the page size is large then the number of entries in page table is less and the number of 

context switches is less. 

Paging separates the programmer’s view of memory and the actual physical memory 

The programmer views memory as one single space, containing only this one program. 

In fact, the user program is scattered throughout physical memory, which also holds other 

programs. 

The difference between the programmer’s view of memory and the actual physical memory 

is reconciled by the Address-Translation Hardware. The logical addresses are translated 

into physical addresses. 

This mapping is hidden from the programmer and is controlled by the operating system. 

User process is unable to access memory that it does not own (i.e. other process memory). 

It has no way of addressing memory outside of its page table and the table includes only 

those pages that the process owns. 

Problem: Slow access of a user memory location 

If we want to access location i, we must first index into the page table using the value in 

the PTBR offset by the page number for i. This task requires a memory access. 

It provides us with the frame number, which is combined with the page offset to produce 

the actual address. We can then access the desired place in memory. 

With this scheme, two memory accesses are needed to access a byte (i.e.) one for the 

page-table entry, one for the byte. 

Thus, memory access is slowed by a factor of 2. This delay is intolerable. 

Solution: Translation Look-aside Buffer (TLB) 

TLB is a special, small, fast lookup hardware cache. It is associative, high-speed memory. 
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Each entry in the TLB consists of two parts: a key (or tag) and a value. 

The size of TLB is between 32 and 1024 entries. 

When the associative memory is presented with an item, the item is compared with all 

keys simultaneously. 

If the item is found, the corresponding value field is returned. 

Multiple levels of TLBs are maintained if the system is having multiple levels of Cache. 

The TLB contains only a few of the page-table entries. 

When a logical address is generated by the CPU, its page number is presented to the TLB. 

If the page number is found, its frame number is immediately available and is used to access 

memory. This is called TLB Hit. 

These TLB lookup steps are executed as part of the instruction pipeline within the CPU, 

which does not add any performance penalty compared with a system that does not 

implement paging. 

If the page number is not in the TLB is known as a TLB miss. At the time of TLB miss, a 

memory reference to the page table must be made. 

Depending on the CPU, this may be done automatically in hardware or via an interrupt to 

the OS. When the frame number is obtained, we can use it to access memory. 

Then we add the page number and frame number to the TLB, so that they will be found 

quickly on the next reference. 

If the TLB is already full of entries, an existing entry must be selected for replacement by 

using any of page replacement algorithms. 

Wired Down entries: These are the entries that cannot be removed from the TLB. 

Examples for these are Key Kernel Code entries. 

Address Space Identifiers (ASID’s) in TLB 

TLBs store Address-Space Identifiers in each TLB entry. 

An ASID uniquely identifies each process and is used to provide address-space protection 

for that process. 

When the TLB attempts to resolve virtual page numbers, it ensures that the ASID for the 

currently running process matches the ASID associated with the virtual page. 

If the ASIDs do not match, the attempt is treated as a TLB miss. 

In addition to providing address-space protection, an ASID allows the TLB to contain 

entries for several different processes simultaneously. 

If the TLB does not support separate ASIDs, then every time a new page table is selected,  

the TLB must be flushed or erased to ensure that the next executing process does not use 

the wrong translation information. 

Otherwise, the TLB could include old entries that contain valid virtual addresses but have  

incorrect or invalid physical addresses left over from the previous process. 

TLB Hit Ratio/ Miss Ratio 

Percentage of times that the page number is found in the TLB is called the Hit ratio. 

Percentage of times that the page number is not found in the TLB is called the Miss ratio. 

 TLB Miss ratio=1-Hit 



DEPARTMENT OF CSE                                                                                                                 Page 17 of 38 
 

Effective Memory Access Time 

It is the sum of time taken for a page to access for TLB hit ratio and TLB miss ratio. 

Example: An 80-percent hit ratio means that we find the desired page number in the TLB 80 

percent of the time. If it takes 100 nanoseconds to access memory, then a mapped-memory 

access takes 100 nanoseconds when the page number is in the TLB. 

If we fail to find the page number in the TLB then we must first access memory for the page 

table and frame number for 100 nanoseconds and then access the desired byte in memory for  

100 nanoseconds with a total of 200 nanoseconds. 

Effective Memory Access Time = (0.80 × 100 ns) + (0.20 × 200 ns) 

= 120 nanoseconds 

Memory Protection in Paging Environment 

Memory protection in a paged environment is accomplished by protection bits associated 

with each frame. These bits are kept in the page table. 

A one bit valid–invalid bit is attached to each entry in the page table. 

When this bit is set to valid, the associated page is in the process’s logical address space 

and it is a legal or valid page. 

When the bit is set to invalid, the page is not in the process’s logical address space. Illegal 

addresses are trapped by use of the valid–invalid bit. 

The operating system sets this bit for each page to allow or disallow access to the page. 

Consider the above figure: A system with a 14-bit address space (0 to 16383), we have a 

program that should use only addresses 0 to 10468. Each page size is of 2 KB. 

Addresses in pages 0, 1, 2, 3, 4 and 5 are mapped normally through the page table. 

Any attempt to generate an address in pages 6 or 7 will find that the valid–invalid bit is set 

to invalid and the computer will trap to the operating system indicating that Invalid page 

reference. 

Problem: The program extends only to address 10468, any reference beyond that address is 

illegal. But references to page 5 are classified as valid, so accesses to addresses up to 12287 

are valid. Only the addresses from 12288 to 16383 are invalid. 

Solution: To avoid this problem we use a register Page-Table Length Register (PTLR) to 

indicate the size of the page table. This PLTR value is checked against every logical address to 

verify that the address is in the valid range for the process. 
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Shared Pages 

Paging has an advantage of Sharing Common Code This is important in Time sharing 

Environment. 

Consider the above figure that shows a system that supports 40 users, each of whom executes 

a text editor. 

If the text editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB 

to support the 40 users. 

If the code is Reentrant Code or Pure Code or Reusable code it can be shared. 

Each process has its own data page. All three processes sharing a three-page editor each 

page 50 KB in size. 

Reentrant code is non-self-modifying code (i.e.) it never changes during execution. Thus, 

two or more processes can execute the same code at the same time. 

Each process has its own copy of registers and data storage to hold the data for the 

process’s execution. The data for two different processes will be different. 

Only one copy of the editor need be kept in physical memory. 

Each user’s page table maps onto the same physical copy of the editor, but data pages are 

mapped onto different frames. 

Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40 copies 

of the 50 KB of data space per user. 

The total space required is now 2,150 KB instead of 8,000 KB by saving 5850 KB. 

Other heavily used programs can also be shared such as compilers, window systems, run-time 

libraries, database systems and so on. 

STRUCTURE OF THE PAGE TABLE 

Page tables can be structured in 3 ways: 

1. Hierarchical Paging 

2. Hashed Page Tables 

3. Inverted Page Tables 
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Hierarchical Paging 

Most modern computer systems support a large logical address space (232 to 264 Bytes) that 

leads to excessively larger page tables. 

Consider a system with a 32-bit (4GB) logical address space. 

If the page size in such a system is 4 KB (212), then a page table may consist of up to 1 

million entries (232/212). 

Assuming that each entry consists of 4 bytes, each process may need up to 4 MB of 

physical address space for the page table alone. 

These page tables are not allocated in main memory contiguously and we will divide this 

page tables into smaller pieces. 

Hierarchical paging uses Two Level Paging Algorithm for structuring of page tables. In Two 

level paging algorithm Page tables are itself paged. 

Consider the system with a 32-bit logical address space and a page size of 4 KB. 

A logical address is divided into a page number consisting of 20 bits and a page offset 

consisting of 12 bits. 

Because we page the page table, the page number is further divided into a 10-bit page 

number and a 10-bit page offset. 

A logical address has two indexes: p1 and p2. 

p1 is an index into the outer page table 

p2 is the displacement within the page of the inner page table. 

The below figure shows the Address translation for a Two-level 32-bit paging architecture. 

Address translation works from the outer page table inward, this scheme is also known as a  

Forward-Mapped Page Table. 
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Example of Two level paging: VAX Mini Computer 

The VAX was the most popular minicomputer from 1977 through 2000. 

The VAX architecture supported a variation of Two-Level paging. 

The VAX is a 32- bit machine with a page size of 512 bytes. 

The logical address space of a process is divided into 4-equal sections, each of which 

consists of 230 bytes. 

Each section represents a different part of the logical address space of a process. 

The first 2 high-order bits of the logical address designate the appropriate section. 

The next 21 bits represent the logical page number of that section and the final 9 bits 

represent an offset in the desired page. 

By partitioning the page table in this manner, the operating system can leave partitions 

unused until a process needs them. 

Entire sections of virtual address space are frequently unused and multilevel page tables 

have no entries for these spaces, greatly decreasing the amount of memory needed to store 

virtual memory data structures. 

An address on the VAX architecture consists of 3-parts: Segment number (s), index to page 

table (p), Displacement with in the page (d). 

After this scheme is used, the size of a one-level page table for a VAX process using one 

section is 221 bits ∗ 4 bytes per entry = 8 MB. 

To further reduce main-memory use, the VAX pages the user-process page tables. 

Problems with Two level paging 

For a system with a 64-bit logical address space, a two-level paging scheme is no longer 

appropriate. 

Let’s take the page size in such a system is 4 KB (212). In this case, the page table consists of 

up to 252 entries. If we use a two-level paging scheme, then the inner page tables can 

conveniently be one page long or contain 210 4-byte entries. 

The outer page table consists of 242 entries or 244 bytes. The obvious way to avoid such a large 

table is to divide the outer page table into smaller pieces. 

To avoid this problem we can divide the outer page again called Three level paging. 

Three level paging 

Suppose that the outer page table is made up of standard-size pages (210 entries or 212 bytes). 

In this case, a 64-bit address space is still daunting: 

Outer page table is still 234 bytes (16 GB) in size. We can still divide this into 4-Level paging. 
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Hashed Page Tables 

Hashed page table is used to handling address spaces larger than 32 bits. 

Each entry in the hash table contains a linked list of elements that hash to the same location to 

handle collisions. 

Each element consists of three fields: 

1. Virtual page number 

2. Value of the mapped page frame 

3. A pointer to the next element in the linked list. 

The virtual page number in the virtual address is hashed into the hash table. 

The virtual page number is compared with field 1 in the first element in the linked list. 

If there is a match, the corresponding page frame (field 2) is used to form the desired 

physical address. 

If there is no match, subsequent entries in the linked list are searched for a matching 

virtual page number. 

For 64 bit address space Clustered page table has been proposed. 

Clustered page tables are similar to hashed page tables except that each entry in the hash 

table refers to several pages (such as 16) rather than a single page. 

Therefore, a single page-table entry can store the mappings for multiple physical-page 

frames. 

Clustered page tables are particularly useful for sparse address spaces, where memory 

references are noncontiguous and scattered throughout the address space. 

Inverted Page Tables 

Problem with page tables: 

Each process has an associated page table. The page table has one entry for each page that 

the process is using. 

Processes reference pages through the pages’ virtual addresses. 

The operating system must then translate this reference into a physical memory address. 

Since the table is sorted by virtual address, the operating system is able to calculate where 

in the table the associated physical address entry is located and to use that value directly. 

The drawback of this method is, each page table may consist of Millions of entries. 

These tables may consume large amounts of physical memory just to keep track of how 

other physical memory is being used. 
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Solution: Inverted page tables will solve the above problem 

An inverted page table has one entry for each real page (i.e. frame) of memory. 

Each entry consists of the virtual address of the page stored in that real memory location 

with information about the process that owns the page. 

Thus, only one page table is in the system and it has only one entry for each page of physical 

memory. 

Inverted page tables often require that an address-space identifier be stored in each entry of 

the page table, since the table usually contains several different address spaces mapping 

physical memory. Storing the address-space identifier ensures that a logical page for a 

particular process is mapped to the corresponding physical page frame. 

Examples: Inverted page tables are used in the 64-bit UltraSPARC and PowerPC systems. 

The above figure shows the inverted page tables used in IBM RT: 

Each virtual address in the system consists of: <process-id, page-number, offset> 

Each inverted page-table entry is a pair <process-id, page-number> where the process-id 

is the address-space identifier. 

When a memory reference occurs, part of the virtual address, consisting of <process-id, 

page-number> is presented to the memory subsystem. The inverted page table is then 

searched for a match. 

If a match is found at entry i then the physical address <i, offset> is generated. 

If no match is found, then an illegal address access has been attempted. 

Problem with inverted page table 

Although this scheme decreases the amount of memory needed to store each page table, it 

increases the amount of time needed to search the table when a page reference occurs. 

Systems that use inverted page tables have difficulty implementing shared memory. 
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VIRTUAL MEMORY 

INTRODUCTION 

Virtual Memory is a technique that allows the execution of processes that are not 

completely in Main-memory. 

Virtual memory involves the separation of Logical Memory as perceived by users from 

Physical Memory. 

This separation allows an extremely large virtual memory to be provided for programmers 

when only a smaller physical memory is available. 

A program would no longer be constrained by the amount of physical memory that is 

available. Users would be able to write programs for a large virtual address space. 

Because each user program could take less physical memory, more programs could be run 

at the same time with a corresponding increase in CPU utilization and throughput but it will 

not increase the Response time or Turnaround time. 

Less I/O would be needed to load or swap user programs into memory, so each user  

program would run faster. This process will benefit both system and user. 

Virtual Address Space of a process refers to the logical (or virtual) view of how a process is 

stored in memory. The below figure shows a virtual address space: 
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In the above figure, a process begins at a certain logical address (say address 0) and exists 

in contiguous memory. 

Physical memory organized in page frames and the physical page frames assigned to a 

process may not be contiguous. 

Memory Management Unit (MMU) maps logical pages to physical page frames in 

Main memory. 

In the above figure, we allow the heap to grow upward in memory as it is used for 

dynamic memory allocation. 

We allow for the stack to grow downward in memory through successive function calls.  

The large blank space (i.e. hole) between the heap and the stack is part of the Virtual address 

space but will require actual physical pages only if the heap or stack grows. Virtual address 

spaces that include holes are known as Sparse Address Spaces. 

Using a Sparse Address Space is beneficial because the holes can be filled as the stack or 

heap segments grow or if we wish to dynamically link libraries or possibly other shared 

objects during program execution. 

Shared Library using Virtual Memory 

System libraries can be shared by several processes through mapping of the shared object into 

a virtual address space. 

Each process considers the libraries to be part of its virtual address space, the actual pages 

where the libraries reside in physical memory are shared by all the processes. 

A library is mapped read-only into the space of each process that is linked with it. 

Two or more processes can communicate through the use of shared memory. 

Virtual memory allows one process to create a region of memory that it can share with 

another process. 

Processes sharing this region consider it is part of their virtual address space, yet the 

actual physical pages of memory are shared. 

Pages can be shared during process creation with the fork( ) system call, thus speeding up 

process creation. 

DEMAND PAGING 

With Demand-paged virtual memory, pages are loaded only when they are demanded during 

program execution. Pages that are never accessed are never loaded into physical memory. 
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A demand-paging system is similar to a paging system with swapping, where processes 

reside in secondary memory (i.e. disk). 

Demand paging uses the concept of Lazy Swapper or Lazy Pager. A lazy swapper or 

pager never swaps a page into memory unless that page will be needed. 

Valid–Invalid bit is used to distinguish between the pages that are in memory and the 

pages that are on the disk. 

When this bit is set to “valid,” the associated page is both legal and is in main memory. 

If the bit is set to “invalid,” the page either is not valid (i.e. not in the logical address space 

of the process) or is valid but is currently on the disk. 

The page-table entry for a page that is brought into main memory is set to valid, but the 

page-table entry for a page that is not currently in main memory is either marked as invalid 

or contains the address of the page on disk. 

Note: The process executes and accesses pages that are Main Memory Resident then the 

execution proceeds normally. 

PAGE FAULT 

Access to a page marked invalid causes a Page Fault. The paging hardware, in translating the 

address through the page table will notice that the invalid bit is set that causes a trap to the 

operating system. This trap is the result of the operating system’s failure to bring the desired 

page into memory. 
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Procedure for Handling Page Fault 

1. We check an internal page table kept with the Process Control Block for this process to 

determine whether the reference was a valid or an invalid memory access. 

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet 

brought in that page, we now page it in. 

3. We find a free frame (Example: by taking one from the free-frame list). 

4. We schedule a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the process and also 

the page table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the trap. The process can now access the 

page in main memory. 

Pure Demand Paging 

System can start executing a process with no pages in memory. 

When the operating system sets the instruction pointer to the first instruction of the process 

and that process is not resides in main memory then the process immediately faults for the 

page. 

After this page is brought into memory, the process continues to execute and faulting as  

necessary until every page that it needs is in memory. 

At that point, it can execute with no more faults. This scheme is called Pure Demand 

Paging. 

Pure Demand Paging never brings a page into memory until it is required. 

Hardware support for Demand Paging 

The hardware to support demand paging is the same as the hardware for paging and swapping: 

Page table has the ability to mark an entry as invalid through a valid–invalid bit or a special 

value of protection bits. 

Secondary Memory holds those pages that are not present in main memory. The secondary 

memory is usually a high-speed disk. It is known as the swap device and the section of disk 

used for this purpose is known as Swap Space. 
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Performance of Demand Paging 

Demand paging can significantly affect the performance of a computer system. 

As long as we have no page faults, the effective access time is equal to the memory 

access time. 

If a page fault occurs, we must first read the relevant page from disk and then access the 

desired word. 

 
Where ma denotes Memory Access Time 

p be probability of a page fault (0 ≤ p ≤ 1). If p is closer to zero then there are few page 

faults. 

Sequence of Steps followed by Page Fault 

1. Trap to the operating system. 

2. Save the user registers and process state. 

3. Determine that the interrupt was a page fault. 

4. Check the page reference was legal and determines the location of the page on the disk. 

5. Issue a read from the disk to a free frame: 

a. Wait in a queue for this device until the read request is serviced. 

b. Wait for the device seek and/or latency time. 

c. Begin the transfer of the page to a free frame. 

6. While waiting, allocate the CPU to some other user by using CPU scheduling. 

7. Receive an interrupt from the disk I/O subsystem (I/O completed). 

8. Save the registers and process state for the other user. 

9. Determine that the interrupt was from the disk. 

10. Correct the page table and other tables to show that the desired page is now in memory. 

11. Wait for the CPU to be allocated to this process again. 

12. Restore the user registers, process state and new page table and then resume the 

interrupted instruction. 

Example: With an average page-fault service time of 8 milliseconds and a memory access 

time of 200 nanoseconds, the effective access time in nanoseconds is: 

Effective Access Time = (1 − p) × (200) + p (8 milliseconds) 

= (1 − p) × 200 + p × 8,000,000 

= 200 + 7,999,800 × p. 

Note: The effective access time is directly proportional to the Page-Fault rate. 

COPY-ON-WRITE 

The fork( ) system call creates a child process that is a duplicate of its parent. 

fork( ) worked by creating a copy of the parent’s address space for the child, duplicating 

the pages belonging to the parent. 

Many child processes invoke the exec( ) system call immediately after creation and the 

copying of the parent’s address space may be unnecessary. 

Copy-on-Write is a technique which allows the parent and child processes initially to 

share the same pages. 

These shared pages are marked as Copy-on-Write pages, meaning that if either process 

writes to a shared page, a copy of the shared page is created. 

Effective Access Time = (1 − p) × ma + p × page fault 
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Example: Assume that the child process attempts to modify a page containing portions of the 

stack, with the pages set to be Copy-on-Write. 

Operating system will create a copy of this page, mapping it to the address space of the 

child process. 

The child process will then modify its own copied page but not the page belonging to the 

parent process. 

When the Copy-on-Write technique is used, only the pages that are modified by either 

process are copied. 

Only pages that can be modified need be marked as Copy-on-Write. Pages that cannot be 

modified can be shared by the parent and child processes. 

Windows XP, Linux and Solaris operating systems uses Copy-on-Write technique. 

Zero-fill-on-demand 

When it is determined that a page is going to be duplicated using Copy-on-Write, it is 

important to note the location from which the free page will be allocated. 

Many operating systems provide a pool of free pages for such requests. These free pages 

are typically allocated when the stack or heap for a process must expand or when there are 

Copy-on-Write pages to be managed. 

OS typically allocate these pages using a technique known as Zero-fill-on-demand. In 

Zero-fill-on-demand the previous contents of the pages are erased before being allocated. 

vfork( ): Virtual Memory fork 

vfork( ) does not support Copy-on-Write technique used by Solaris and Linux. 

vfork( ) is modified version of fork( ) system call. 

With vfork( ), the parent process is suspended and the child process uses the address 

space of the parent. 

Because vfork( ) does not use Copy-on-Write, if the child process changes any pages of 

the parent’s address space, the altered pages will be visible to the parent once it resumes. 

Therefore, vfork( ) must be used with caution to ensure that the child process does not 

modify the address space of the parent. 

vfork( ) is intended to be used when the child process calls exec( ) immediately after 

creation. 

vfork( ) is an extremely efficient because it does not copy any pages at the time of process 

creation. Vfork( ) sometimes used to implement UNIX command-line shell interfaces. 
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PAGE REPLACEMENT ALGORITHMS 

If no frame is free, we find one that is not currently being used and free it. 

We can free a frame by writing its contents to swap space and changing the page table to 

indicate that the page is no longer in main memory. 

We can now use the freed frame to hold the page for which the process faulted. 

We modify the page-fault service routine to include Page Replacement: 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 

b. If there is no free frame, use a Page-Replacement algorithm to select a Victim frame. 

c. Write the victim frame to the disk and change the page table and frame table. 

3. Read the desired page into newly freed frame and change the page table and frame table. 

4. Continue the user process from where the page fault occurred. 

Modify bit or Dirty bit 

Each page or frame has a modify bit associated with it in the hardware. 

The modify bit for a page is set by the hardware whenever any byte in the page has been 

modified. 

When we select a page for replacement, we examine its modify bit. 

If the bit is set, the page has been modified since it was read in from the disk. Hence we 

must write the page to the disk. 

If the modify bit is not set, the page has not been modified since it was read into memory. 

Hence there is no need for write the memory page to the disk, because it is already there. 

Note: To determine the number of page faults for a particular reference string and page- 

replacement algorithm, we also need to know the number of page frames available. As the 

number of frames available increases, the number of page faults decreases. 

There is several Page Replacement Algorithms are in use: 

1. FIFO Page Replacement Algorithm 

2. Optimal Page Replacement Algorithm 

3. LRU Page Replacement Algorithm 

4. Counting Based Page Replacement Algorithm 
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First-In-First-Out Page Replacement Algorithm 

FIFO algorithm associates with time of each page when it was brought into main memory. 

When a page must be replaced, the oldest page is chosen. 

We can create a FIFO queue to hold all pages in memory. 

We replace the page at the Head of the queue. 

When a page is brought into memory, we insert it at the tail of the queue. 

Example: Consider the below reference string and memory with three frames 

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 

First 3-references (7, 0, 1) cause 3-Page faults and are brought into these empty frames. 

The next reference (2) replaces page 7, because page 7 was brought in first. 

Since 0 is the next reference and 0 is already in memory, we have no fault for this reference. 

The first reference to 3 results in replacement of page 0, since it is now first in line. Because 

of this replacement, the next reference to 0, will fault. Page 1 is then replaced by page 0. 

By the end, there are Fifteen page faults altogether. 

Problem: Belady’s Anomaly 

Belady’s Anomaly states that: the page-fault rate may increase as the number of allocated 

frames increases. Researchers identifies that Belady’s anomaly is solved by using Optimal 

Replacement algorithm. 

Optimal Page Replacement Algorithm (OPT Algorithm) 

It will never suffer from Belady’s anomaly. 

OPT states that: Replace the page that will not be used for the longest period of time. 

OPT guarantees the lowest possible page fault rate for a fixed number of frames. 

Example: Consider the below reference string and memory with three frames 

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 
 

The first 3-references cause faults that fill the 3-empty frames. 

The reference to page 2 replaces page 7, because page 7 will not be used until reference 

number 18, whereas page 0 will be used at 5 and page 1 at 14. 
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The reference to page 3 replaces page 1 because page 1 will be the last of the three pages 

in memory to be referenced again. 

At the end there are only 9-page faults by using optimal replacement algorithm which is 

much better than a FIFO algorithm with 15-page faults. 

Note: No replacement algorithm can process this reference string in 3-frames with fewer than 

9- faults. 

Problem with Optimal Page Replacement algorithm 

The optimal page-replacement algorithm is difficult to implement, because it requires future  

knowledge of the reference string. The optimal algorithm is used mainly for comparison studies 

(i.e. performance studies). 

LRU Page Replacement Algorithm 

In LRU algorithm, the page that has not been used for the longest period of time will be 

replaced (i.e.) we are using the recent past as an approximation of the near future. 

LRU replacement associates with each page the time of that page’s last use. 

Example: Consider the below reference string and memory with three frames 

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 

The first five faults are the same as those for optimal replacement. 

When the reference to page 4 occurs LRU replacement sees that out of the three frames in 

memory, page 2 was used least recently. 

Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used. 

When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the 

least recently used of the three pages in memory. 

The total number of page faults with LRU is 12 which is less as compared to FIFO. 

LRU can be implemented in two ways: 1. Counters and 2. Stack 

Counters 

Each page-table entry is associated with a time-of-use field and add to the CPU a logical 

clock or counter. The clock is incremented for every memory reference. 

Whenever a reference to a page is made, the contents of the clock register are copied to the 

time-of-use field in the page-table entry for that page. 

We replace the page with the smallest time value. This scheme requires a search of the page 

table to find the LRU page and a write to memory to the time-of-use field in the page table 

for each memory access. 

The times must also be maintained when page tables are changed due to CPU scheduling. 
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Stack 

LRU replacement is implemented by keeping a stack of page numbers. 

Whenever a page is referenced, it is removed from the stack and put on the top. 

In this way, the most recently used page is always at the top of the stack and the least 

recently used page is always at the bottom. 

Because entries must be removed from the middle of the stack, it is best to implement this 

approach by using a doubly linked list with a Head pointer and a Tail pointer. 

Removing a page and putting it on the top of the stack then requires changing six pointers 

at worst. 

Each update is a little more expensive, but there is no search for a replacement. 

The tail pointer points to the bottom of the stack, which is the LRU page. 

This approach is particularly appropriate for software or microcode implementations of 

LRU replacement. 

Counting-Based Page Replacement Algorithm 

There are two approaches in this scheme: LFU and MFU 

Least Frequently Used (LFU) 

In LFU page-replacement algorithm, the page with the smallest count will be replaced. 

Reason for this selection is that an actively used page should have a large reference count. 

A problem arises when a page is used heavily during the initial phase of a process but 

then is never used again. 

Since it was used heavily, it has a large count and remains in memory even though it is no 

longer needed. 

One solution is to shift the counts right by 1 bit at regular intervals, forming an 

exponentially decaying average usage count. 

Most Frequently Used (MFU) 

In MFU page-replacement algorithm is based on the argument that the page with the smallest 

count was probably just brought in and has yet to be used. 

Note: Neither MFU nor LFU replacement is common. The implementation of these 

algorithms is expensive and they do not approximate OPT replacement well. 

Example:2 Consider the reference string 2,3,2,1,5,2,4,5,3,2,5,2 and frame size is 3. 
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ALLOCATION OF FRAMES 

There are different approaches used for allocation of frames: 

1. Minimum Number of Frames 

2. Allocation Algorithms 

3. Global versus Local Allocation 

4. Non-Uniform Memory Access 

Minimum Number of Frames 

Allocation is based on minimum number of frames per process is defined by the computer  

architecture. The maximum number is defined by the amount of available physical memory. 

We must also allocate at least a minimum number of frames. 

One reason for allocating at least a minimum number of frames involves performance. 

When a page fault occurs before an executing instruction is complete, the instruction must 

be restarted. 

As the number of frames allocated to each process decreases, the page-fault rate increases 

and slows the process execution. 

Hence the process must have enough frames to hold all the different pages that any single 

instruction can reference. 

Allocation Algorithms 

There are two algorithm are used: Equal allocation and Proportional allocation. 

Equal Allocation 

It splits m frames among n processes is to give everyone an equal share, m/n frames. 

Example: If there are 93 frames and five processes, each process will get 18 frames 

(93/5=18). The 3-leftover frames can be used as a free-frame buffer pool. 

Problem with Equal Allocation 

Consider a system with a 1-KB frame size and two processes P1 and P2. 

Process P1 is of 10 KB and process P2 is of 127 KB are the only two processes running 

in a system with 62 free frames. 

Now if we apply Equal allocation then both P1 and P2 will get 31 frames. 

It does not make sense to give P1 process to 31 frames where its maximum use is 10 

frames and other 21 frames are wasted. 

Proportional Allocation 

In this algorithm we allocate available memory to each process according to its size. 

Let the si be the size of the virtual memory for process Pi then S =  si 

If the total number of available frames is m, we allocate ai frames to process Pi, where ai 

is approximately: ai = si/S × m. 

We must adjust each ai to be an integer that is greater than the minimum number of 

frames required by the instruction set, with a sum not exceeding m. 

Example: With proportional allocation, we would split 62 frames between 2-processes, one 

of 10 pages and one of 127 pages, by allocating 4 frames for P1 and 57 frames for P2. 

P1-> 10/137 × 62 ≈ 4 

P2-> 127/137 × 62 ≈ 57 

Now two processes share the available frames according to their “needs,” rather than equally. 
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Global versus Local Allocation 

With multiple processes competing for frames, we can classify page-replacement algorithms 

into two broad categories: Global Replacement and Local Replacement. 

Global replacement allows a process to select a replacement frame from the set of all  

frames, even if that frame is currently allocated to some other process (i.e.) one process can 

take a frame from another process. 

Local replacement requires that each process select from only its own set of allocated  

frames. 

Example: Consider an allocation scheme wherein we allow High-priority processes to select 

frames from low-priority processes for replacement. 

A process can select a replacement from its own frames or the frames of any lower- 

priority process. 

This approach allows a High-priority process to increase its frame allocation at the 

expense of a low-priority process. 

With a local replacement, the number of frames allocated to a process does not change. 

With global replacement, a process may happen to select only frames allocated to other 

processes, thus increasing the number of frames allocated to it. 

Non-Uniform Memory Access (NUMA) 

Consider a system is made up of several system boards, each containing multiple CPUs 

and some memory. 

In systems with multiple CPUs, a one CPU can access some sections of main memory 

faster than it can access others. 

The system boards are interconnected in various ways, ranging from system buses to 

High-speed network connections. 

The CPUs on a particular board can access the memory on that board with less delay than 

they can access memory on other boards in the system. 

Systems in which memory access times vary significantly are known collectively as Non- 

Uniform Memory Access (NUMA) systems. 

NUMA systems are slower than systems in which memory and CPUs are located on the 

same motherboard. 

THRASHING 

A process is thrashing if it is spending more time for paging than executing. 

If the number of frames allocated to a low-priority process falls below the minimum 

number required by the computer architecture, we must suspend that process’s execution. 

We should then page out its remaining pages, freeing all its allocated frames. 

This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. 

If the process does not have the number of frames it needs to support pages in active use, 

it will quickly page-fault and the process must replace some page. 

Since all of its pages are in active use, it must replace a page that will be needed again right 

away. Consequently, it quickly faults again and again by replacing pages that it must bring 

back in immediately. 

This high paging activity is called Thrashing. 
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Cause of Thrashing 

The operating system monitors CPU utilization. If CPU utilization is too low, we increase the 

degree of multiprogramming by introducing a new process to the system. 

If a global page-replacement algorithm is used then it replaces pages without regard to the 

process to which the pages are belongs to. 

Now suppose that a process enters a new phase in its execution and needs more frames. It 

starts faulting and taking frames away from other processes. 

These processes need those pages which have been faulted earlier so they also fault taking 

frames from other processes. 

These faulting processes must use the paging device to swap pages in and out. 

As they queue up for the paging device, the ready queue empties. As processes wait for 

the paging device, CPU utilization decreases. 

The CPU scheduler sees the decreasing CPU utilization and increases the degree of 

multiprogramming by introducing new process in to the system again. 

The new process tries to get started by taking frames from running processes, causing 

more page faults and a longer queue for the paging device. 

As a result, CPU utilization drops even further and the CPU scheduler tries to increase the 

degree of multiprogramming even more. 

Thrashing has occurred and system throughput decreases. The page fault rate increases 

tremendously. As a result, the effective memory-access time increases. 

No work is getting done, because the processes are spending all their time paging. 

Consider the above figure that show how thrashing will occur: 

As the degree of multiprogramming increases, CPU utilization also increases until a 

maximum is reached. 

If the degree of multiprogramming is increased even further then thrashing occurs and 

CPU utilization drops sharply. 

At this point, we must stop thrashing and increase the CPU utilization by decreasing the 

the degree of multiprogramming. 

Solutions to Thrashing 

1. Local Replacement Algorithm (or) Priority Replacement Algorithm 

2. Locality Model 

Local Replacement Algorithm 

With local replacement, if one process starts thrashing, it cannot steal frames from 

another process. 

Local replacement Algorithm limits thrashing but it cannot avoid thrashing entirely. 
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If processes are thrashing, they will be paging device queue most of the time. 

The average service time for a page fault will increase because of the longer average 

queue for the paging device. 

Thus, the effective access time will increase even for a process that is not thrashing. 

Locality Model 

The locality model states that, as a process executes, it moves from locality to locality. 

A locality is a set of pages that are actively used together. A program is generally composed 

of several different localities, which may overlap. 

Example: When a function is called, it defines a new locality. In this locality, memory 

references are made to the instructions of the function call, its local variables and a subset of 

the global variables. When we exit the function, the process leaves this locality, since the local 

variables and instructions of the function are no longer in active use. We may return to this 

locality later. 

Note: Localities are defined by the program structure and its data structures. 

Suppose we allocate enough frames to a process to accommodate its current locality. 

It will fault for the pages in its locality until all these pages are in memory; then, it will 

not fault again until it changes localities. 

If we do not allocate enough frames to accommodate the size of the current locality, the 

process will thrash, since it cannot keep in memory all the pages that it is actively using. 
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SEGMENTATION WITH PAGING 
 

 Pure segmentation is not very popular and not being used in many of the operating systems. 
However, Segmentation can be combined with Paging to get the best features out of both the techniques. 

 

In Segmented Paging, the main memory is divided into variable size segments which are further 

divided into fixed size pages. 
 

1. Pages are smaller than segments. 

2. Each Segment has a page table which means every program has multiple page tables. 

3. The logical address is represented as Segment Number (base address), Page number and page 

offset. 

 

Segment Number → It points to the appropriate Segment Number. 

 
Page Number → It Points to the exact page within the segment 

Page Offset → Used as an offset within the page frame 

Each Page table contains the various information about every page of the segment. The Segment  

Table contains the information about every segment. Each segment table entry points to a page table 

entry and every page table entry is mapped to one of the page within a segment. 

 

 

 
Translation of logical address to physical address 

 

The CPU generates a logical address which is divided into two parts: Segment Number and Segment 

Offset. The Segment Offset must be less than the segment limit. Offset is further divided into Page 

number and Page Offset. To map the exact page number in the page table, the page number is added 

into the page table base. 
 

The actual frame number with the page offset is mapped to the main memory to get the desired word 

in the page of the certain segment of the process. 
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Advantages of Segmented Paging 

 

1. It reduces memory usage. 

2. Page table size is limited by the segment size. 

3. Segment table has only one entry corresponding to one actual segment. 

4. External Fragmentation is not there. 

5. It simplifies memory allocation. 

 

Disadvantages of Segmented Paging 

 

1. Internal Fragmentation will be there. 

2. The complexity level will be much higher as compare to paging. 

3. Page Tables need to be contiguously stored in the memory. 
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